
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Calcium Image Analysis Pipeline for Analysis of Calcium Signals

Gabriel Mirandaa, Jeremiah Zartmanb

a Department of Chemical and Biological Engineering, School of Engineering, Pontificia Universidad Católica de Chile. 4th year

ggmiranda@uc.cl

b Department of Chemical and Biochemical Engineering, College of Engineering, University of Notre Dame. Professor,

jzartman@nd.edu

Abstract

Calcium images has been used in biological science for various reasons, but in this study, we are
focus on the usefulness of them to represent physiological changes in the cell or tissue that it is
being studied. The study of these images grants great insight of what is happening in the system
that we are studying, this is why several analysis techniques have been developed in the past
years. In this research, we have developed a pipeline for the analysis of calcium images that uses
different programs to generate the extraction of different features that describe the behavior of
the tissue that is being studied in a quantitative way. The first software used is called CaImAn
and is used to generate the motion correction and source extraction of the calcium images.
Following this step, the calcium profile is extracted and analyzed with SciPy. The pipeline shows
great performance, and the capability to generate figures to communicate the data generated,
all of this in a highly automated way, where only a few parameters have to be tunned by the
user.

Palabras clave: Calcium imaging, Image analysis, Calcium signaling, Feature extraction, Automated

analysis.

1. Introduction

Many processes that occur within the cell use calcium (Ca+2) as second messenger, for example

cell division, growth and death present an underlying calcium dynamic that guides this process

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

(Berridge et al., 2000). The cells can encode intercellular and intracellular signals in Ca+2 signals,

this signals are characterized by their amplitude, frequency and integrated intensity (Berridge,

1997; Clapham, 2007). For this reason, it is important to study the calcium expression of the cell

to understand the effect of certain environmental conditions on the cellular dynamic represented

by the calcium signals, changes in the characteristics of the signals may represent the changes of

different physiological aspects of the cell. This could help us to tuned the cells to do what we want

from the calcium signals, for example tunned the signals to modulate organ size (Soundarrajan et

al., 2021). Thanks to technologies like the fluorescent probe GCaMP6f the imaging of the dynamics

of Ca+2 is possible, revealing interesting dynamics like oscillations, spikes and waves of Ca+2 (Gu et

al., 1994; Politi et al., 2006; Sanchez et al., 2021; Soundarrajan et al., 2021). In addition to this,

recent microscopy insights allow us to see the calcium dynamics in great detail, this is important

as the study of this dynamics contain great information of what is happening in the cell; is worth

mentioning that recent technologies have allowed us to see this dynamic in vivo (Friedrich et al.,

2021; Stosiek et al., 2003).

The great amount of data generated from the imaging of calcium dynamics creates the necessity

of the development of analysis technologies to extract quantitative data from them. In the recent

years various algorithms for this analysis have been developed, and many implementations have

appeared. Algorithms like constrained non-negative matrix factorization (CNMF) and its extended

version for 1-photon microscopes (CNMF-E) are used by calcium imaging software to extract the

fluorescent profile of the calcium signals (Pnevmatikakis et al., 2016; Zhou et al., 2018). The most

used calcium image analysis software are Calcium Image Analysis (CaImAn)(Giovannucci et al.,

2019), miniscope 1-photon imaging signal extraction pipeline (Min1pipe) (Lu et al., 2018),

EZcalcium (Cantu et al., 2020) and CytoNet (Mahadevan et al., 2022), being CaImAn the most

relevant one shown by the great amount of citations and stars in its GitHub profile. From these

software we can extract many features, but the most important one is the fluorescent profile of

the Regions of Interest (ROIs) identified by the software, in figure 1 you can see the input and

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

output schema of the analysis tools, also CytoNet generates an analysis of the cellular community

that is captured by the image.

Even though these software we can extract the fluorescent profile, none of these generates a

robust mathematical analysis of the profile. In this work we present a calcium image analysis

pipeline, using CaImAn to extract the fluorescent profile and the softwares SciPy, Numpy, scikit-

learn and Matplotlib for mathematical analysis and visualization (Harris et al., 2020; Hunter, 2007;

Pedregosa et al., 2011; Virtanen et al., 2020). This pipeline has been tested by analyzing calcium

images provided by Zartman Lab probing the usefulness of this tool.

In this document the analysis is going to be done in images of an experiment of the effect of Yoda1

in the Piezo1 channels. Piezo1 is a mechanosensitive non-selective calcium channel, this means

that is a channel for calcium that is activated by mechanical force imposed on it (Liao et al., 2021;

Volkers et al., 2015). And the drug Yoda1 that activates the Piezo1 channels without the necessity

of the mechanical activation, generating an influx of calcium to the cell without imposing a

mechanical stress in the Piezo1 channel(Botello-Smith et al., 2019).

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Figure 1: Input and output representation of the different software. a) EZcalcium: The input of
this software is a .tif stack containing the microscopy video and the output is the image with
the ROIs recognized and the fluorescent profile of the signals of each ROIs with a .mat file that
contains the information extracted. b) CytoNet: The input of this software is a .tif stack
containing the microscopy video and the output the cellular community analysis done by the
software. c) CaImAn: The input of this software is a .tif stack containing the microscopy video
and the output is the image with the ROIs recognized and the fluorescent profile of the signals
of each ROIs, from the output more information can be extracted, for example the data
containing the numerical information of the fluorescent profile.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

2. Methodology

The pipeline generated was developed in the environment Google Colab (Bisong, 2019). Figure 2

represents the pipeline by a flow chart.

In the following sections we are going to present the pipeline in the order in which is run.

2.1. Initial configurations

The first step of the pipeline is the installation of the required packages and the importation of

them to the environment.

Figure 2: The workflow of the pipeline can be summarized by this flow chart. The software
used is listed in the image too. The pipeline was implemented in a .ipynb file using Google
Colab, by doing this we take advantage of the shareability of this application. The flowchart
was generated with Lucidchart (Faulkner, 2018)

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

!pip install git+https://github.com/flatironinstitute/CaImAn.git --quiet #

installation of the package from github

installation of the packages that this package depends on

!pip install pims --quiet

!pip install pynwb --quiet

!pip install ipyparallel --quiet

!pip install peakutils --quiet

try:

 (magic_name, parameter_s).get_ipython().magic(u'load_ext autoreload')

 (magic_name, parameter_s).get_ipython().magic(u'autoreload 2')

 (magic_name, parameter_s).get_ipython().magic(u'matplotlib qt')

except:

 pass

import logging

import matplotlib.pyplot as plt

import numpy as np

import glob

import scipy

from scipy.special import logsumexp

import caiman as cm

from caiman.source_extraction import cnmf

from caiman.utils.utils import download_demo

from caiman.utils.visualization import inspect_correlation_pnr,

nb_inspect_correlation_pnr

from caiman.motion_correction import MotionCorrect

from caiman.source_extraction.cnmf import params as params

from caiman.utils.visualization import plot_contours, nb_view_patches, nb_plot_contour

from caiman.paths import caiman_datadir

import cv2

from skimage.restoration import denoise_wavelet

import tifffile

import io

import base64

from IPython.display import HTML

import os

from mpl_toolkits import mplot3d

try:

 cv2.setNumThreads(0)

except:

 pass

these packages will help us to plot the reults. of the analysis

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

import bokeh.plotting as bpl

import holoviews as hv

bpl.output_notebook()

hv.notebook_extension('bokeh')

Thanks to be working in Google Colab we can access the files in our Google Drive, this is a great

advantage because in this way the files are stored in the cloud rather than in the physical storage

of the computer, saving memory for other type of files. To connect to Google Drive the following

code has to be run.

from google.colab import drive

drive.mount('/content/drive')

Once initiated the connection with Google Drive, we must define the path to the file that is going

to be analyzed, and the path to the folder that contains said file.

names = ['path_to_file'] # this variable tells the program where the file is. It is a

list, so if you want to upload one video, you have to

 # put one path in the list

path_to_model = 'path_to_folder' # this variable stores the path to the folder which

stores the video file. It is also the folder that will store the .mmap files

The large number of calculations that the software has to do in order to run the analysis, the usage

of parallel computing is needed. In this paradigm the large work is divided in small works that can

be solved by parallel processor (Asanovic et al., 2009). To star this process a cluster must be

started, to do this we use the following function:

the following code will generate the cluster and will close any pre-existing

cluster, initiating a new one.

if 'dview' in locals():

 cm.stop_server(dview=dview)

c, dview, n_processes = cm.cluster.setup_cluster(

 backend='local', n_processes=None, single_thread=False)

2.2. Motion Correction

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

The first part of the process of image analysis is the motion correction of the images. In this process

the motion that the image has due to the movement of the sample is corrected by different

algorithms. The algorithm used by the CaImAn package is NoRMCorre (Pnevmatikakis &

Giovannucci, 2017). Before running this algorithm, we first have to define the parameters of it.

Parameters which are dependent of the data set

frate = 10 # The rate of the movie frames

decay_time = 0.4 # This is the lenght of the transient, the units are

seconds

Parameters of the motion correction process

motion_correct = True # This will flag the performing motion correction

pw_rigid = False # This is a flag for the performing piecewise-rigid motion

correction (otherwise just rigid)

gSig_filt = (3, 3) # This is the size of high pass spatial filtering, it is used

when we are working with 1p data

max_shifts = (5, 5) # This parameter marks the maximum allow rigid shift

strides = (48, 48) # Is going to start a new patch of pw-rigid motion correction

every x pixels

overlaps = (24, 24) # Quantifies the overlap of patches(size of patch

strides+overlaps)

max_deviation_rigid = 3 # Indicates the maximun deviation allow for a patch with

respect to rigid shift

border_nan = 'copy' # Indicates the replication along the border

splits_rig = 10 #

shifts_opencv = True # flag for correcting motion using bicubic interpolation

(otherwise FFT interpolation is used)

Now we store all the paremeters in a dictionary

mc_dict = {

 'fnames': fnames, # note that here we pass the file path

 'fr': frate,

 'decay_time': decay_time,

 'pw_rigid': pw_rigid,

 'max_shifts': max_shifts,

 'gSig_filt': gSig_filt,

 'strides': strides,

 'overlaps': overlaps,

 'max_deviation_rigid': max_deviation_rigid,

 'border_nan': border_nan,

 'splits_rig': splits_rig,

 'path_to_model': path_to_model, # here we pass tha path to the model's folder

 'shifts_opencv': shifts_opencv

}

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Finally we store the parameters in an object, this object is going to be read by the

program

opts = params.CNMFParams(params_dict=mc_dict)

Once the parameters are set, the motion correction algorithm is run.

If the motion_correct is True then the correction is going to be performed

if motion_correct:

 # thus is the cored that will perform the correction

 mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))

 mc.motion_correct(save_movie=True)

 fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig

 if pw_rigid:

 bord_px = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)),

 np.max(np.abs(mc.y_shifts_els)))).astype(int)

 else:

 bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(int)

 # With this we can plot the result

 plt.subplot(1, 2, 1); plt.imshow(mc.total_template_rig) # % plot template

 plt.subplot(1, 2, 2); plt.plot(mc.shifts_rig) # % plot rigid shifts

 plt.legend(['x shifts', 'y shifts'])

 plt.xlabel('frames')

 plt.ylabel('pixels')

 # This is going to create the memory map that will store the motion corrected

video

 bord_px = 0 if border_nan == 'copy' else bord_px

 fname_new = cm.save_memmap(fname_mc, base_name='memmap_', order='C',

 border_to_0=bord_px)

else: # If motion_correct if false, then the video is only going to be stored

 # as a .mmap file

 fname_new = cm.save_memmap(fnames, base_name='memmap_',

 order='C', border_to_0=0, dview=dview)

Finally, we save the motion corrected image in a memory map (.mmap file) to use it later in the

source extraction step.

load memory .mmap file

Yr, dims, T = cm.load_memmap(fname_new)

images = Yr.T.reshape((T,) + dims, order='F')

2.3. Source Extraction

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Source extraction refers to the process in which the Regions of Interest are detected by ROI

detection algorithms, in this case the algorithm is GreedyCorr (Zhou et al., 2018). Then the

fluorescent profile of these regions is extracted, in this case using the CNMF-E algorithm. In this

process a fine tuning of the parameters of the CNMF algorithm has to be done to generate an

extraction that fits what is seen in the images. For this process, the amount of noise that the image

contains needs to be analyzed, a good way to do this is using the “Plot Z-axis profile” available in

the image analysis software ImageJ.

Before the algorithm of is run, the parameters of it have to be defined, to do this the following

code block has to be run. The description of these parameters is defined in the commentaries of

the code.

Set of paremeters that will define the source extraction and deconvolution

p = 1 # This defines the order of the autoregressive system

K = None # This defines the upper limit of the number of components per

patch, in general this parameter is define as None

gSig = (3, 3) # Gaussian width of a 2D gaussian kernel, this approximates a

neuron

gSiz = (13, 13) # average diameter of a neuron, is useful to define it as 4*gSig+1

Ain = None # The possibility to seed the analysis with a binary mask

merge_thr = .7 # merging threshold, this threshold is defined as the maximum

correletion

rf = 40 # half-size of the patches in pixels. e.g., if rf=40, patches are

80x80

stride_cnmf = 20 # amount of overlap between the patches in pixels

(keep it at least large as gSiz, i.e 4 times the neuron size

gSig)

tsub = 2 # downsampling factor in time for initialization,

increase if you have memory problems

ssub = 1 # downsampling factor in space for initialization,

increase if you have memory problems

you can pass them here as boolean vectors

low_rank_background = 2 # None leaves background of each patch intact,

True performs global low-rank approximation if gnb>0

gnb = 2 # number of background components (rank) if positive,

else exact ring model with following settings

gnb= 0: Return background as b and W

gnb=-1: Return full rank background B

gnb<-1: Don't return background

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

nb_patch = 2 # number of background components (rank) per patch if gnb>0,

else it is set automatically

the following parameters will help you to optimze the image analysis

if the image is too noisy is recommendable to lower the paremters

if there are too many regions of interst (ROI) is recommendable to increase this

values

min_corr = 0.9 # min peak value from correlation image

min_pnr = 0.9 # min peak to noise ration from PNR image, This value should be

grater than 1

 # to have more signal than noise. This is because the ratio is

signal/noise

 # So values bigger than 1 express profiles where the signal is

more intense than the

 # noise generated by the image it self

this parameter is used to analyze the sample further more and optimze even more the

ROIs,

is not always advisable to increase it so much, 2 is a good number

ssub_B = 2 # additional downsampling factor in space for background

this parameter defines the ring size of the ROIs

ring_size_factor = 1 # radius of ring is gSiz*ring_size_factor

now we change the paramters stored in the previous object created for the motion

correction

algorithm

opts.change_params(params_dict={'method_init': 'corr_pnr', # use this for 1 photon

 'K': K,

 'gSig': gSig,

 'gSiz': gSiz,

 'merge_thr': merge_thr,

 'p': p,

 'tsub': tsub,

 'ssub': ssub,

 'rf': rf,

 'stride': stride_cnmf,

 'only_init': True, # set it to True to run CNMF-E

 'nb': gnb,

 'nb_patch': nb_patch,

 'method_deconvolution': 'oasis', # could use

'cvxpy' alternatively

 'low_rank_background': low_rank_background,

 'update_background_components': True, # sometimes

setting to False improve the results

 'min_corr': min_corr,

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 'min_pnr': min_pnr,

 'normalize_init': False, # just leave as

is

 'center_psf': True, # leave as is

for 1 photon

 'ssub_B': ssub_B,

 'ring_size_factor': ring_size_factor,

 'del_duplicates': True, # whether to

remove duplicates from initialization

 'border_pix': bord_px}) # number of

pixels to not consider in the borders)

Before running the source extraction algorithm, we can inspect the parameters defined to see if

everything is in order.

with this function we generate some summary of the image (correlation and peak to

noise ratio)

cn_filter, pnr = cm.summary_images.correlation_pnr(images[::1], gSig=gSig[0],

swap_dim=False) # change swap dim if output looks weird, it is a problem with tiffile

inspect the summary images and set the parameters

nb_inspect_correlation_pnr(cn_filter, pnr)

To run the algorithm the following code has to be run. This algorithm might take some time, but

the analysis generates a variety of ROIs with high quality.

the following code block runs the algorithm

cnm = cnmf.CNMF(n_processes=n_processes, dview=dview, Ain=Ain, params=opts)

cnm.fit(images)

To filter the quality of the profile extracted the following code must be run.

parameters that will filter the components identified

You can change this parameters in order to change the number of componentes accepted

min_SNR = 3 # adaptive way to set threshold on the transient size

r_values_min = 0.3 # threshold on space consistency (if you lower more components

will be accepted, potentially with worst quality). The higher

the value

 # the higher the probability of the component to be a neuron.

 # So if the cells are very different from neuron the value

should be lower

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

cnm.params.set('quality', {'min_SNR': min_SNR,

 'rval_thr': r_values_min,

 'use_cnn': False})

this will generates the filtering of componentes

cnm.estimates.evaluate_components(images, cnm.params, dview=dview)

now we can see how many of them were identified and how meny where accepted

print(' ***** ')

print('Number of total components: ', len(cnm.estimates.C))

print('Number of accepted components: ', len(cnm.estimates.idx_components))

This code will output the number of components detected by the CNMF-E algorithm and the

number of components that were accepted after being filtered.

Finally, the 𝐹/ΔF profile can be extracted using the following code block.

cnm.estimates.detrend_df_f(quantileMin=8, frames_window=250)

If you get the error "RuntimeError: invalid percentile" change the values of the

parameters of the function,

but not go to far from the defoult values

 2.4. Mathematical Analysis

The mathematical analysis developed to extract important mathematical features of the calcium

signals. The features extracted are the number of peaks, the width of half maximum, height of the

peak and the frequency of oscillation of the calcium signals. The code developed for this part relies

strongly in mathematical analysis software like SciPy (Virtanen et al., 2020) and numpy (Harris et

al., 2020), for the visualization features of the functions generated use the package Matplotlib for

the generation of the figure (Hunter, 2007).

The functions generated can be found in the following code block:

function that generates the amount of peaks of the signal

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

def generate_peaks(graph, height=0, plot=False, number=False, distance = 1):

 '''

 input:

 graph : nd.array

 the nd.array that stores the temporal values of the DF/F profile

 height: int

 indicates the minimal required to interpretate as a signal

 plot: bool

 Indicates whether you like to output the plot of the peaks and signal or not

 number: bool

 Indicate whether you like to output the number of peaks or not

 distance: int

 This parameters define the distance of the peaks in order to consider them

as peaks.

 for example, if we consider [0,0,0,4,0,8]

 if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not

 considered as a peak, because at a distance of 2 is other number higher

than 4.

 output:

 n_peaks: int

 the number of peaks of the graph in the timeframe of evaluation

 '''

 # we extract the peaks using the function of scipy

 peaks,_= scipy.signal.find_peaks(graph, height=height , distance = distance)

 # calculate the length of the array of peaks in order to know the quantity of them

 n_peaks = len(peaks)

 # now we plot a graph containing the peaks detected

 if plot == True:

 plt.figure()

 plt.plot(graph)

 plt.plot(peaks, graph[peaks],"x")

 # if number is true you can have a string saying the number of peaks

 if number==True:

 print("the number of peaks is "+ str(n_peaks))

 return n_peaks

function that generates the seconds and images of the system

def seconds_images(fname):

 '''

 input:

 fname: string

 a string containing the path to the .tif file to analyze

 output:

 seconds_interval: int

 The amount of seconds between to frames

 n_images: int

 The amoun of images in the .tif file

 seconds: int

 the length of the video in seconds

 considerations:

 for a better analysis make sure that your .tif file contains in its metadata

 the interval of seconds between each frame, or in the frames are labeled as the

 second in which it was taken. Other types of metadata cannot be analyze due to the

 lack of the temporal parameter.

 '''

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 with tifffile.TiffFile(fname) as tif: # we read the tiff file of the images to

extract the seconds interval

 volume = tif.asarray()

 axes = tif.series[0].axes

 imagej_metadata = tif.imagej_metadata

 keys_metadata= list(imagej_metadata.keys())

 # if the .tif file stores the amount of seconds between images

 if'finterval' in keys_metadata: # if the metadata contains the interval between the

frames

 seconds_interval=imagej_metadata['finterval'] # the seconds between two frames

 n_images=imagej_metadata['images']

 return seconds_interval, n_images

 # if the .tif file stores the seconds that took to take the video as labels of the

images

 else: # if the label of the metadata frames contains the amount of seconds that

took

 # to take the pictures

 labs = imagej_metadata['Labels']

 seconds = labs[-1].strip(' s')

 seconds_interval = float(labs[1].strip(' s'))-labs[0].strip(' s')

 n_images = imagej_metadata['images']

 return seconds_interval, n_images

####### this function generates the frequency of peaks of the signal

def generate_frequency(graph, sec_img,height=0, distance = 1):

 '''

 input:

 graph : nd.array

 the nd.array that stores the temporal values of the DF/F profile

 sec_img: tuple

 tuple that contains the seconds between two frames and the total images

 in the .tif file

 height: int

 indicates the minimal required to interpretate as a signal

 distance: int

 This parameters define the distance of the peaks in order to consider them

as peaks.

 for example, if we consider [0,0,0,4,0,8]

 if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not

 considered as a peak, because at a distance of 2 is other number higher

than 4.

 output:

 frequency: int

 the frequency of the peaks

 '''

 # ways to extract and calculate the duration of the calcium image video

 if len(sec_img) == 2:

 duration = sec_img[0] * (sec_img[1]-1) # calculate the duration of the video

 if len(sec_img) == 1:

 duration = float(sec_img[0])

 # generate the number of peaks in order to calculate the frequency

 n_peaks = generate_peaks(graph,height=height, plot=False, number=False, distance =

distance)

 # formula for the number of peaks, this is in peaks/seconds

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 frequency= n_peaks/duration

 return frequency

this function generates the average height of the peaks in the signal

expression

def generate_average_hpeak(graph, height=0, distance = 1):

 '''

 input:

 graph : nd.array

 the nd.array that stores the temporal values of the DF/F profile

 height: int

 indicates the minimal required to interpretate as a signal

 distance: int

 This parameters define the distance of the peaks in order to consider them

as peaks.

 for example, if we consider [0,0,0,4,0,8]

 if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not

 considered as a peak, because at a distance of 2 is other number higher

than 4.

 output:

 average: int

 The average height of the calcium peaks

 '''

 # we extract the properties of the peaks using the function of scipy

 peaks,properties= scipy.signal.find_peaks(graph, height=height, distance = distance)

 height_peaks = properties['peak_heights']

 # we calculate the average height of the peaks

 average= np.mean(height_peaks)

 return average

this function generates the width of the half of the peak

def generate_whm(graph, sec_img,height=0,distance = 1,plot=False):

 '''

 input:

 graph : nd.array

 the nd.array that stores the temporal values of the DF/F profile

 height: int

 indicates the minimal required to interpretate as a signal

 distance: int

 This parameters define the distance of the peaks in order to consider them

as peaks.

 for example, if we consider [0,0,0,4,0,8]

 if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not

 considered as a peak, because at a distance of 2 is other number higher

than 4.

 output:

 whm: nd.array

 indicates the whm of the peaks

 '''

 # we extract the properties of the peaks, between them the weight

 peaks,properties= scipy.signal.find_peaks(graph, height=height, distance = distance)

 # we extract the width of the peaks

 width_peak=scipy.signal.peak_widths(graph, peaks,rel_height=0.5)

 # if there are no peaks, we define the width as 0

 if len(peaks) == 0:

 whm = [0]

 else:

 whm = width_peak[0]

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 # plot the profile with the width of the medium height

 if plot==True:

 results_half = scipy.signal.peak_widths(graph, peaks, rel_height=0.5)

 plt.figure()

 plt.plot(graph)

 plt.plot(peaks, graph[peaks], "x")

 plt.hlines(*results_half[1:], color="C2")

 whm = np.array(whm) * float(sec_img[0])

 return whm

this function generates the analysis of the fluorescent expression of the

components of the tissue

def analyze_df_f(spatial_components, fname, initial_idx=0, final_idx=0, idx_comp=[],

height = 0, distance = 1,idx = 'all'):

 '''

 input:

 spatial_components: nd.array

 an nd.array which contains the graphs of the DF_F profile

 fname: string

 string containing the path to the .tif file to analyze

 initial_idx: int

 intial component of the interval to analyze. Only use if idx ==

'interval'

 final_idx: int

 final component of the interval to analyze. Only use if idx ==

'interval',

 containing this last one

 idx_comp: list

 list of the indexes of the components to analyze

 if you want the component number i use i as input

 height: int

 indicates the minimal required to interpretate as a signal

 distance: int

 This parameters define the distance of the peaks in order to consider them

as peaks.

 for example, if we consider [0,0,0,4,0,8]

 if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not

 considered as a peak, because at a distance of 2 is other number higher

than 4.

 idx: string

 indicate the interval type of the components

 'all': Analize all the components

 'interval': indicate the interval of components to analyze. If this is

 the case indicate the initial and final component index.

 'specific': indicate the specific number of the components to analyze.

 output:

 analysis: dict

 a nested dictionary that indicates the parameters of each component

 'numnumber_of_peaks': number of peaks in the time frame

 'fraquency_of_peaks': frequency of the peaks over the time

 'whm_of_peaks': whm of the peaks

 'peaks_average_height': the average height of the peaks

 '''

 analysis=dict()

 sec_image=seconds_images(fname)

 # we generate a different array of index in order to analyse the desire components

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 if idx == 'all':

 index = range(len(spatial_components))

 elif idx == 'interval' and (bool(initial_idx)or initial_idx==0) and bool(final_idx)

:

 index = range(initial_idx, final_idx+1)

 elif idx == 'specific' and bool(idx_comp):

 index = np.array(idx_comp)-1

############## analysis loop ##############

 for i in index:

 # we generate the analysis for each component extracted

 graph=spatial_components[i]

 n_peaks=generate_peaks(graph,height=height, distance = distance)

 freq=generate_frequency(graph,sec_image,height=height, distance = distance)

 peak_whm=generate_whm(graph,sec_img = sec_image,height=height)

 peak_aver=generate_average_hpeak(graph, height = height , distance = distance)

 results={'number_of_peaks': n_peaks,

 'frequency_of_peaks': freq,

 'whm_of_peaks':peak_whm,

 'peaks_average_height':peak_aver}

 analysis[i+1]=results

 return analysis

this function generates the average of the parameters calculates by the

function analyze_df_f

def average_parameters(dict_results):

 '''

 input:

 dict_results: dict

 dictionary containing the information of each cell identified by the

analysis tool.

 output:

 out: dict

 dictionary containing the information asked, it has the average resul of the

 parameters calculated by the function analyze_df_f

 outpus:

 average_number_of_peaks

 verage_frequency_of_peaks

 average_whm_of_peaks

 average_average_heigh_of_peaks

 '''

 # define the initial variables in order to found out the total of them

 num_peaks = 0

 freq_peaks = 0

 whm_of_peaks = 0

 hg_peaks = 0

 comps=len(dict_results)

 for i in range(len(dict_results)):

 # we run through every component in the results dictionary

 num_peaks+=dict_results[i+1]['number_of_peaks']

 freq_peaks += dict_results[i+1]['frequency_of_peaks']

 whm_of_peaks +=

logsumexp(dict_results[i+1]['whm_of_peaks'])/len(dict_results[i+1]['whm_of_peaks'])

 hg_peaks += dict_results[i+1]['peaks_average_height']

 # the output is made of the average number, taking in consideration the total

extracted before

 out = {'average_number_of_peaks':num_peaks/comps,

 'average_frequency_of_peaks':freq_peaks/comps,

 'average_whm_of_peaks':whm_of_peaks/comps,

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

 'average_average_heigh_of_peaks':hg_peaks/comps}

 return out

With this function we can extract important features of the calcium oscillations, these important

features are number of peaks, frequency of peaks, width of half max of the peaks and the height

of the peaks. Also, we can calculate the average of the parameters of each of the tissues that we

are analyzing.

2.5. Piezo1 and Yoda1 experiments

A set of experiments were performed in the wing disc of Drosophila melanogaster involving the

interaction between the Yoda1 drug and the Piezo1 channel. These experiments are not part of

this study but were provided by the experimental team of Zartman Lab for their analysis.

The experiments were performed in three genetic lines of Drosophila flies, one without alterations

in the Piezo1 channels, one with the over expression of this channels, and the final one with the

knockdown of them by the implementation of the RNAi (interference RNA) called PiezoRNAi. Then

this fly lines were cultivated in absence of Yoda1 and in presence of Yoda1 (1uM). This generated

6 different conditions in which we can analyze the interactions of Yoda1 and Piezo1 with the

calcium dynamics in the wing disc. The images of the calcium activity were taken using a 1-photon

confocal microscope.

3. Results & Discussion

The principal insight of this program is the facility to generate important analysis from the data

captured by confocal microscopy and it facilitates the analysis for non-programmer wet biologists.

Several images were analyzed using this pipeline, showing a high put through extraction of the

parameters that were required joined with a capability to generate important images for the

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

publication of the insights. First, the frequency of oscillation of the components of the wing disc

of Drosophila melanogaster, this analysis is shown in figure 3.

From this analysis we can notice that Yoda1 increases the number of components that are

oscillating and the frequency of them, as we can see from the analysis of the tissue with and

without yoda1 with no genetic alteration (the ones in the first column), showing that Yoda1

activates the Piezo1 channels, enhancing the entrance of calcium to the cell, generating more

oscillation of calcium over time. Also, we can see that, even though the Piezo1 channels are

inhibited by PiezoRNAi, in the presence of Yoda1 the activity of calcium increases generating the

components that are detected by the program. Furthermore, we can see that the number of

components detected in the PiezoRNAi sample is bigger than the one with Piezo1 over expression

Figure 3: Frequency analysis of the components detected by the program CaImAn. The
components detected are represented by the dots. The frequency of said components is
represented by the color of them, following the color scheme that is shown in the color bar
on the right. Each picture was taken using a confocal 1-photon microscope.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

sample, elucidating some kind of interaction between Yoda1 and the increased number of Piezo1

Channels that inhibits the activity of calcium oscillations.

Other types of analysis can be generated, figure 4 shows the mathematical analysis of the effects

of Yoda1 over time in a sample with normal expression of Yoda1.

In figure 4, we can see that the activity of Piezo1 channels increases over time, having a peak at

60 minutes. But at 90 minutes we can see no activity of calcium, showing that the effect of Yoda1

over the Piezo1 channels do not function during great time spans. We can see then that the activity

of Yoda1 increases over time until it reaches a peak, then it decreases rapidly until there is no

more calcium activity.

Figure 4: Box plot of the frequency of oscillation of calcium over different time points. The
frequency extraction of the tissue was performed by analyzing images that were taken 30
minutes after cultivation, 60 minutes after cultivation and 90 minutes after cultivation. The
last column does not present points because the CaImAn program didn’t detect any
component that presented calcium activity.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

4. Conclusion

We have shown the capability of the pipeline generated to analyze calcium images. From the

analysis developed and the data extracted we can generate figures to communicate the insights

that the experiments uncover. Specifically, here we have analyzed the experiment of effect of

Yoda1 over the Piezo1 channels in the wing disc of D. melanogaster, and from the images

generated from the data extracted with the pipeline and the capabilities of the package matplotlib

(Hunter, 2007), we can generate deep analysis of what is happening in the tissue thanks to the

quantitative data. This shows the importance of the tool generated because it will enable wet

scientist to generate data analysis without the necessity of having computational skills.

Further work is yet needed in this area due to the lack of tools that analyze phenomena in non-

neuron like cells because the software used, CaImAn, could generate the analysis because the cell

shape of the cells that compose the wing disc are like neurons. But, in cells with a morphology that

differs a lot from neurons the analysis pipeline might fail, this is the case of plant cells. A further

study in this area is needed, and the necessity of tools that attain the problem of cell segmentation

joined with source extraction in plant cells is high. Other tools that are needed in this area are

tools that can analyze calcium waves in tissue or cells, this is important that is has been shown

that this waves are important in different processes, for example organ growth (Soundarrajan et

al., 2021).

(Faulkner & Contributor, 2018)

Acknowledgment

The autors give thanks to the team that welcomed me in the University of Notre Dame, specifically

to Nilay Kumar, Mayesha Mim, David Gazzo, Maria Unger, Shuman Liu, and special thanks to Dr.

Jeremiah Zartman who opened the doors of his laboratory to me. Also, the authors would like to

give thanks to Mayesha Mim and Nilay Kumar for providing the images for the analysis and testing

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

of the pipeline. And a thanks to the School of Engineering of Pontificia Universidad Católica de

Chile for financing this opportunity.

Referencias

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,

Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., & Yelick, K. (2009). A view of the parallel

computing landscape. Communications of the ACM, 52(10), 56–67.

https://doi.org/10.1145/1562764.1562783

Berridge, M. J. (1997). The AM and FM of calcium signalling. Nature, 386(6627), 759–760.

https://doi.org/10.1038/386759a0

Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium

signalling. Nature Reviews Molecular Cell Biology, 1(1), 11–21.

https://doi.org/10.1038/35036035

Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud

Platform: A Comprehensive Guide for Beginners. Apress. https://doi.org/10.1007/978-1-

4842-4470-8

Botello-Smith, W. M., Jiang, W., Zhang, H., Ozkan, A. D., Lin, Y.-C., Pham, C. N., Lacroix, J. J., &

Luo, Y. (2019). A mechanism for the activation of the mechanosensitive Piezo1 channel

by the small molecule Yoda1. Nature Communications, 10(1), 4503.

https://doi.org/10.1038/s41467-019-12501-1

Cantu, D. A., Wang, B., Gongwer, M. W., He, C. X., Goel, A., Suresh, A., Kourdougli, N., Arroyo, E.

D., Zeiger, W., & Portera-Cailliau, C. (2020). EZcalcium: Open-Source Toolbox for Analysis

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

of Calcium Imaging Data. Frontiers in Neural Circuits, 14, 25.

https://doi.org/10.3389/fncir.2020.00025

Clapham, D. E. (2007). Calcium Signaling. Cell, 131(6), 1047–1058.

https://doi.org/10.1016/j.cell.2007.11.028

Faulkner, A. & Contributor. (2018). Lucidchart for easy workflow mapping. Serials Review, 44(2),

157–162.

Friedrich, J., Giovannucci, A., & Pnevmatikakis, E. A. (2021). Online analysis of microendoscopic

1-photon calcium imaging data streams. PLOS Computational Biology, 17(1), e1008565.

https://doi.org/10.1371/journal.pcbi.1008565

Giovannucci, A., Friedrich, J., Gunn, P., Kalfon, J., Brown, B. L., Koay, S. A., Taxidis, J., Najafi, F.,

Gauthier, J. L., Zhou, P., Khakh, B. S., Tank, D. W., Chklovskii, D. B., & Pnevmatikakis, E. A.

(2019). CaImAn an open source tool for scalable calcium imaging data analysis. ELife, 8,

e38173. https://doi.org/10.7554/eLife.38173

Gu, X., Olson, E., & Spitzer, N. (1994). Spontaneous neuronal calcium spikes and waves during

early differentiation. The Journal of Neuroscience, 14(11), 6325–6335.

https://doi.org/10.1523/JNEUROSCI.14-11-06325.1994

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., & Smith, N. J. (2020). Array programming with NumPy.

Nature, 585(7825), 357–362.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering,

9(03), 90–95.

Liao, J., Lu, W., Chen, Y., Duan, X., Zhang, C., Luo, X., Lin, Z., Chen, J., Liu, S., Yan, H., Chen, Y.,

Feng, H., Zhou, D., Chen, X., Zhang, Z., Yang, Q., Liu, X., Tang, H., Li, J., … Wang, J. (2021).

Upregulation of Piezo1 (Piezo Type Mechanosensitive Ion Channel Component 1)

Enhances the Intracellular Free Calcium in Pulmonary Arterial Smooth Muscle Cells From

Idiopathic Pulmonary Arterial Hypertension Patients. Hypertension, 77(6), 1974–1989.

https://doi.org/10.1161/HYPERTENSIONAHA.120.16629

Lu, J., Li, C., Singh-Alvarado, J., Zhou, Z. C., Fröhlich, F., Mooney, R., & Wang, F. (2018). MIN1PIPE:

A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Reports,

23(12), 3673–3684. https://doi.org/10.1016/j.celrep.2018.05.062

Mahadevan, A. S., Long, B. L., Hu, C. W., Ryan, D. T., Grandel, N. E., Britton, G. L., Bustos, M.,

Gonzalez Porras, M. A., Stojkova, K., Ligeralde, A., Son, H., Shannonhouse, J., Robinson, J.

T., Warmflash, A., Brey, E. M., Kim, Y. S., & Qutub, A. A. (2022). cytoNet: Spatiotemporal

network analysis of cell communities. PLOS Computational Biology, 18(6), e1009846.

https://doi.org/10.1371/journal.pcbi.1009846

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in

Python. The Journal of Machine Learning Research, 12, 2825–2830.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Pnevmatikakis, E. A., & Giovannucci, A. (2017). NoRMCorre: An online algorithm for piecewise

rigid motion correction of calcium imaging data. Journal of Neuroscience Methods, 291,

83–94. https://doi.org/10.1016/j.jneumeth.2017.07.031

Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D., Reardon, T., Mu, Y.,

Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T. M., Peterka, D. S., Yuste, R., &

Paninski, L. (2016). Simultaneous Denoising, Deconvolution, and Demixing of Calcium

Imaging Data. Neuron, 89(2), 285–299. https://doi.org/10.1016/j.neuron.2015.11.037

Politi, A., Gaspers, L. D., Thomas, A. P., & Höfer, T. (2006). Models of IP3 and Ca2+ Oscillations:

Frequency Encoding and Identification of Underlying Feedbacks. Biophysical Journal,

90(9), 3120–3133. https://doi.org/10.1529/biophysj.105.072249

Sanchez, C., Berthier, C., Tourneur, Y., Monteiro, L., Allard, B., Csernoch, L., & Jacquemond, V.

(2021). Detection of Ca2+ transients near ryanodine receptors by targeting fluorescent

Ca2+ sensors to the triad. Journal of General Physiology, 153(4), e202012592.

https://doi.org/10.1085/jgp.202012592

Soundarrajan, D. K., Huizar, F. J., Paravitorghabeh, R., Robinett, T., & Zartman, J. J. (2021). From

spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates

organ size control. PLOS Computational Biology, 17(11), e1009543.

https://doi.org/10.1371/journal.pcbi.1009543

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

Stosiek, C., Garaschuk, O., Holthoff, K., & Konnerth, A. (2003). In vivo two-photon calcium

imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12),

7319–7324. https://doi.org/10.1073/pnas.1232232100

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,

Peterson, P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: Fundamental algorithms for

scientific computing in Python. Nature Methods, 17(3), 261–272.

Volkers, L., Mechioukhi, Y., & Coste, B. (2015). Piezo channels: From structure to function.

Pflügers Archiv - European Journal of Physiology, 467(1), 95–99.

https://doi.org/10.1007/s00424-014-1578-z

Zhou, P., Resendez, S. L., Rodriguez-Romaguera, J., Jimenez, J. C., Neufeld, S. Q., Giovannucci, A.,

Friedrich, J., Pnevmatikakis, E. A., Stuber, G. D., Hen, R., Kheirbek, M. A., Sabatini, B. L.,

Kass, R. E., & Paninski, L. (2018). Efficient and accurate extraction of in vivo calcium

signals from microendoscopic video data. ELife, 7, e28728.

https://doi.org/10.7554/eLife.28728

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERÍA

Dirección de Investigación e Innovación

Programa IPre de Investigación en Pregrado

